
NASA/TP--2001-210989

f 3_ v-7

A Recommended Procedure for Estimating

the Cosmic-Ray Spectral Parameter

of a Simple Power Law With Applications

to Detector Design

L. W. Howell

Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and

Space Administration

Marshall Space Flight Center • MSFC, Alabama 35812

May 2001



NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076- ! 320

(301 ) 62 !-0390

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22 ! 6 I
(703) 487-4650



TABLE OF CONTENTS

1. INTRODUCTION ................................................................................................................

2. SIMPLE POWER LAW .......................................................................................................

3. ESTIMATION OF THE SPECTRAL PARAMETER a I .....................................................

3.1 Method of Moments ....................................................................................................

3.2 Method of Maximum Likelihood ................................................................................

4. DETECTOR RESPONSE FUNCTION ...............................................................................

5. PROBABILITY DISTRIBUTION OF THE DETECTOR RESPONSE .............................

6. IDEAL DETECTOR ............................................................................................................

6.1 Method of Moments for a "Real" Detector .................................................................

6.2 Maximum Likelihood for a"Real" Detector ...............................................................

7. NON-GAUSSIAN DETECTOR RESPONSE FUNCTION ................................................

8. ENERGY-DEPENDENT RESOLUTION STUDY .............................................................

9. IMPLICATIONS OF DETECTOR RESPONSE MODEL UNCERTAINTIES ..................

10. APPLICATION TO REAL COSMIC-RAY DATA ..............................................................

11. CONFIDENCE INTERVAL FOR a .....................................................................................

12. TESTING FOR SLOPE DIFFERENCES OF TWO COSMIC-RAY

ELEMENTAL SPECIES ......................................................................................................

13. SUMMARY, REMARKS, AND CONCLUSIONS .............................................................

REFERENCES .................................................................................................................................

1

2

6

6

8

10

12

13

13

17

19

20

22

24

27

29

30

33

,,°

111



LIST OF FIGURES

l.

.

.

.

.

.

°

II.

12.

Standard deviation of simulated incident energies from power law

(ragged curve) for 100 missions compared with that from normal

distribution having same mean and variance ........................................................................

Probability distribution of method of moments estimate of a I with

relative frequency histogram of spectral parameter estimates obtained
from simulation ....................................................................................................................

Comparing the mean incident energy with the mean of the detector

responses for each of 30 missions ........................................................................................

Comparing the standard deviation of the GCR incident energies with

the standard deviation of the detector responses for each of 30 missions ............................

Maximum likelihood estimates for zero- and 40-percent resolution

detector for 30 missions ........................................................................................................

Gaussian and gamma detector response functions to 40 TeV proton

(40-percent resolution) .........................................................................................................

Energy-dependent resolution curves ....................................................................................

Maximum likelihood estimate with 95-percent confidence interval

for 20"missions"" "". .................................................................................................................

Frequency histogram of O_ML (2,000 missions) ....................................................................

Frequency histogram of the estimated standard deviation of O_ML .................................................

Comparison between method of moments and ML as a function

of detector resolution ............................................................................................................

Comparing the effect of collecting power on the standard deviation

of the ML estimate of the spectral index off ..........................................................................

4

7

16

16

18

19

20

27

28

28

3O

31



LIST OF TABLES

.

.

.

.

Nonconstant energy resolution study .................................................................................

Biased estimate of t_ I when detector energy resolution is incorrectly known

and assumed to be 35 percent ............................................................................................

Number of simulated energy deposits above cut y_ for various E l for Gaussian

detector response function with 40-percent resolution ......................................................

Numerical values used to construct figures 11 and 12 .......................................................

21

23

25

32

vii



LIST OF ACRONYMS

GCR

GEANT

ML

pdf

TP

galactic cosmic ray

"geometry and tracking" Particle Physics Simulation program

maximum likelihood

probability density function

Technical Publication

viii



NOMENCLATURE

b

C

d

E

L

LL

(log L)'

(log L)"

No

Pr

s

It i

V

gar

Y

YC

Z

intercept in linear mean detector response

coefficient in linear mean detector response

intercept in linear RMS detector response

coefficient in linear RMS detector response

random variable symbolizing the energy (units in TeV) of a galactic cosmic ray

likelihood function

log-likelihood function

first derivative of the log-likelihood function

second derivative of the log-likelihood function

average number of events on a given mission

probability

sample standard deviation

simulated random number from a standard uniform distribution

coefficient of variation defined as the standard deviation divided

by the mean

variance

Random variable symbolizing the detector's response (energy deposit) (units in GeV)

cutoff value used to select subsets of detector responses

standard normal random number

ix



0

O_1

,uE

P

cyE

NOMENCLATURE (Continued)

partial derivative

spectral parameter of the simple power law energy spectrum

population mean of GCR spectrum

detector energy resolution

population standard deviation of GCR spectrum



TECHNICAL PUBLICATION

A RECOMMENDED PROCEDURE FOR ESTIMATING THE COSMIC-RAY SPECTRAL

PARAMETER OF A SIMPLE POWER LAW WITH APPLICATIONS

TO DETECTOR DESIGN

1. INTRODUCTION

This Technical Publication (TP) develops and compares two statistical methods for estimating

the spectral parameter of the simple power law energy spectrum from simulated detector responses

(energy deposits). The maximum likelihood (ML) procedure, which is shown to be the superior

approach, is then generalized for application to a set of real cosmic-ray data that make the methodol-

ogy applicable to existing cosmic-ray data sets.

As part of this research, analytical methods were developed in conjunction with a Monte Carlo

simulation to explore the combination of the expected cosmic-ray environment with a generic

space-based detector and its planned life cycle. This allows exploration of various detector features

and their subsequent impact on estimating this spectral parameter. This study thereby permits instru-

ment developers to make important trade studies in design parameters as a function of the science

objectives, which is particularly important for space-based detectors where physical parameters, such

as dimension and weight, impose rigorous practical limits to the design envelope.



2. SIMPLE POWER LAW

The simple power law suggests that the number of protons detected above an energy E for an

assumed collecting power (combination of size and observing time) is given by I

( E  -al+l

No(> E)= NA[ A J ,
(I)

where E is in units TeV, a i is believed to be --2.8, and N A and E A are numbers determined from the

detector size and exposure time in the environment. For a typical space-based detector of 1 m 2 with a

3-yr program life, N A and E A are 160 and 500 TeV, respectively, implying that this detector is

expected to observe 160 proton events above 500 TeV over its expected life cycle. In statistical terms,

N 0 is assumed to represent an average number of events while the actual number to be observed on

any given mission would follow the Poisson probability distribution with mean number N 0. The num-

ber of particles detected depends only on the geometrical factor of the assumed detector and its mate-

rial composition. The detection efficiency is a convolution of the geometry and material composition

and is taken to be independent of energy.

The associated cumulative probability distribution function for E over an energy range [E 1,E2]

is then given by

No(> E) - No(> E 2 )
O0(E)=I for E I < E < E 2

NO(> E l)- N0(> E 2)

E-a+l --I--orI
- £2 (2)=1

_l-a t
El -al -/_2

Thus, the corresponding probability density function (pdf) for E is obtained by differentiating

equation (2) to give

dOo(E)

O°(E) - dE

a 1-1 E-a_ for E l<E<E 2 (3)
I -a 1

El-al _ E 2



To randomly sampleGCR proton eventenergiesfrom the simple power spectrumover the
interval [El,E2], ui=_o(Ei) is solved in terms of E i to obtain

(4)

where u i is a simulated random number from a standard uniform distribution and _0 -I represents the

inverse function of _0, which is a conventional notation that will be used in subsequent sections. The

mean, variance, and other moments of the simple power law distribution are determined by the expected

value operator, where the general form of (E m) is

E"9

E]

a I 1 ]E_n+l-al _m+l-cq
= - _/z 2

- m - 1 El-Cq -I-_lOCI J / /z2

(5)

Note a crucial point at this time, and that is <E2> becomes infinite (as do all other higher

moments) as E 2 goes to infinity, which is easily seen in equation (6):

rb ._ A
lim | x_x - dx=_forallA_<3anda>O .

b._..)oo "_a

(6)

This observation suggests the need for a careful look at the effects of the large variance and

other higher moments associated with all power law distributions, even when E 2 is kept finite. A

measure of the relative dispersion of the energies of the incident protons, which is independent of

units, is defined by V=CYE/PE for the simple power law and is called the coefficient of variation in the

statistical literature. An important concept in detector design is the energy resolution p of the detector

that provides a measure of the relative accuracy of a cosmic-ray detector, which is the fractional error

in measurements of a monoenergetic beam. The resolution p is defined as the standard deviation

divided by the mean response with typical values of 30 to 40 percent.

As will be shown in this TP, the precision with which the spectral parameter o_I can be esti-

mated from a set of detector responses (energy deposits), measured in terms of its standard deviation,

is a function of both the variance of the incident energies and the uncertainty induced by the detector.

The dominating component of this measurement precision will be shown to be attributable to the

standard deviation of the incident energies o"E, which in turn can only be controlled through collecting

power. Since V and p are dimensionless and provide a measure of relative dispersion for the power

law distribution and detector, respectively, an instructive comparison will show that V >> p. To illus-

trate these points, a detector life cycle having parameters N A = 160 and E A = 500 TeV will observe

52,200 events on average in the energy range E l = 20 TeV to E 2 = 5,500 TeV from a simple power law



spectrumwhenorI is 2.8. This gives a mean galactic cosmic-ray (GCR) event energy ,uE = 44.5 TeV,

a standard deviation crE = 74.10 TeV, and a coefficient of variation I/= 166.5 percent. In comparison,

the resolution p of most detectors is between 30 and 40 percent. E-, is chosen for this detector life

cycle combination as 5.500 TeV, since the expected number of events above this energy are negli-

gible, while E t is taken to be 20 TeV for purposes of this discussion.

Since the number of events and their incident energies will vary because of the finite detector

size and exposure time, the statistical behavior of the GCR event energies in combination with a

detector having energy resolution p and the subsequent spectral parameter estimate over multiple

missions shall be studied. Thus, for each mission, a random number N of GCR events from a Poisson

distribution with mean 52,200 representing the number of simulated events that the detector will

observe in the energy range 20 to 5,500 TeV on any given mission is first generated.

Next, the incident energy of each of these N events using equation (4) is simulated. For

example, for one such simulated mission, N = 51,883 and the mean and standard deviation of the

simulated GCR incident energies are calculated to be 43.85 and 66.39 TeV, respectively. To illustrate

the large fluctuations associated with power law distributions, the same number of events (51,883)

frorn a normal distribution having a mean of 44.5 and standard deviation 74.1 so as to match the

power law's mean and standard deviation for this energy range when o_t = 2.8 was also simulated. The

sample mean and standard deviation, 44.51 and 74.17, respectively, for a single sample mission, which

are much closer to the population mean and variance than those from the power law random samples,

were also observed. The process is repeated for 100 missions and the standard deviation for each

mission is plotted in figure 1.
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Figure 1. Standard deviation of simulated incident energies from power

law (ragged curve) for 100 missions compared with that from

normal distribution having same mean and variance.
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Note the large fluctuations of the standard deviations for the power law samples from mission

to mission; while in contrast, the standard deviations of missions generated from a normal distribu-

tion are very stable. As will be seen in subsequent sections, this is why the variation in detector

responses is dominated by the variation of the GCR event energies, relative to the uncertainty induced

by detector resolution. This in turn contributes the dominant component of the standard deviation of

the spectral parameter estimator.

The variation of the sample standard deviation s used as an estimator of (y and measured by its

standard deviation is given by

'9/'/4 -/-/2

O's _ 4,u2N

where u r is the rth central moment about the mean, 2 defined for the simple power law as

(7)

t,t,. = f (E - ut+)r (p0 (E)dE .
(8)

Thus, the large variation in mission standard deviations is due to the term/24 , which again is

only finite by setting E 2 to a finite value, but nevertheless is responsible for the erratic behavior of the

mission-to-mission sample standard deviations depicted in figure 1. This erratic behavior of the

observed mission standard deviations will be true for any power law having spectral index o_l in the

range 3 <od < 5. Note that for the normal distribution,

cr (9)
Gs-- 2N/-_ ,

and evaluation of these two formulae yield o"s = 5 TeV for the simple power law and 0.229 TeV for the

normal distribution, which is roughly a factor of 22.



3. ESTIMATION OF THE SPECTRAL PARAMETER a I

Of particular interest in the study of cosmic rays is the estimation of the spectral parameter a I

from a set of data. In this section, two statistical procedures for estimating a I are developed and

compared. Even though in practice the actual incident particle energies are never observed (but only

a measure of their energy deposition from their passage through the detector), it is important to con-

sider the concept of an ideal detector having zero resolution. Thus, such a detector would measure the

GCR event energies exactly.

3.1 Method of Moments

The method of moments consists of equating the sample moments with the population

moments, which in general leads to k simultaneous nonlinear algebraic equations in the k unknown

population parameters. For the simple power law, there is only one parameter to be estimated, so the

sample mean E is set to the population mean PE obtained by setting m = I in equation (5) to obtain

equation ( I0) to be solved in terms of &l :

^ "_-_
-/5,_ (10)

Thus, for a given sample of size N, this equation is solved in terms of &lby numerical methods

to provide an estimate of a I. This estimator, which is a function of the random variable E, has its own

associated pdf. Since the GCR incident energy E has mean ,u E and finite variance 0 .2 (only because

the upper energy._E 2 is finite), it is known by the central limit theorem that the distribution of the

sample average E follows a normal distribution with mean/.t E and variance 0.2 IN.

m

For example, when a 1= 2.8, E l = 20 TeV, and E 2 = 5,500 TeV, E is normally distributed with
mean 44.5 TeV and standard deviation (74.1 TeV)/N I/2. These results can be used to obtain the

probability distribution of the estimator by solving the probability equation,

Pr,

_, _
t )El -

- 44.5

74.1
<Z

,)

Z 1 x-

= S _e 2 dx , (11)
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in terms of _1 for various values of Z. Letting Z vary from -4.7 to 4.7 and setting N = 52,000 events

gives the probability distribution of _'1 shown in figure 2. Also depicted in figure 2 is the relative

frequency histogram of the estimates _l, based on 5,000 simulated missions. For each mission, 52,000

events on average are simulated and the estimate of a I obtained by solving equation (11). Further-

more, even though there is no explicit mathematical form for the pdf, its mean and standard deviation

can be calculated by numerical methods. For the distribution shown here, its mean is numerically

evaluated to be 2.800 and standard deviation as 0.0115 when N = 52,000, which compares to the mean

and standard deviation of the 5,000 simulated estimates with 2.800 and O.O114, respectively. With the

ability to numerically construct this estimator's pdf and moments, the important result found was that

its variance is inversely proportional to the sample size N, which happens to be true for many common

estimators (e.g., the sample mean, standard deviation, and median). For example, if the number of

events is doubled, then the variance is halved: and if the number of events is halved, then the variance

doubles. Note that this relationship between sample size and the standard deviation of the estimator

&l is based on keeping E l and E 2 fixed, so that in practice, increasing the collecting power can reduce
the variance.
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Figure 2. Probability distribution of method of moments estimate

of _71 with relative frequency histogram of spectral parameter
estimates obtained from simulation.



3.2 Method of Maximum Likelihood

The likelihood function of a random sample from the simple power law, regarded as a function

of the single unknown parameter _1, is

L(al) = / _]-_ -_._-a, Ei
\ _'1 -- _'2

, Ej_<E;_<E . (12)

The method of ML seeks as the estimate of oq that value (say, (X'ML) which maximizes the

likelihood function so that L(aML )> L(O_1) for all a]. Statistically, this means that the ML estimator

leads us to a choice of a I that maximizes the probability of obtaining the observed data. In practice, it

is often simpler to work with the logarithm of the likelihood function and seek solutions of (log L)'

= 0 for which (log L)"< 0 (indicating a maximum), where the prime and double prime indicate the

first and second derivative, respectively. Thus, equation (13) is numerically solved in terms of o_I to

obtain the ML estimate O_ML:

31°gL N I(l°gEI)El-a_ -(i°gE2)E_-a_ ]N- N3o:, ,_,- 1 el-,_,-7_-_,_L2 - i=,7-"logE,: o.
(13)

The second derivative of the log-likelihood function is next obtained. Note that (log L)'< 0 for

all oq, indicating that log L is concave; hence, there is a unique maximum, which was graphically

observed by plotting log L as a function of o_1:

32 log L [ 1
[

_O_--? = -N[ (Otl_ 1) 2

+
I+(z I I+_ I , ]_E2 e]____(loge_2:lo_gel)2

(E2E I1 - E1E_' )2 ]J

(14)

By the Cramer-Rao inequality, the lower bound of the variance of any estimator tz of GI is
given by

-1 (15)
Var(&)_> 32 IogL '

3o_ 2

which is asymptotically attained by the ML estimator. Also note that it is inversely proportional to the

number of events N as was the variance of the estimator obtained using the method of moments. Other

important properties of ML estimators are that they are (1) asymptotically normally distributed and

(2) consistency or asymptotically unbiased. Thus, a key question is, "For what values of N are these

asymptotic properties achieved by the ML procedure?"



Based on the same 5,000 mission set discussed in section 3, the mean and standard deviation

of the 5,000 ML estimates are 2.800 and 0.00782, respectively. Using equations (15) and (16), the

Cramer-Rao bound is computed to be 0.00786 when N = 52+000 and aMi _ = 2.800, which compares

very well with the simulation results. Furthermore, the frequency histogram of these 5,000 ML esti-

mates resembled the normal distribution as stated in ( I ) of the above paragraph. A separate simulation

study was conducted in which the sample size N was gradually reduced from 52,000 to 200 and the

two asymptotic properties--attaining the Cramer-Rao bound and consistency'--were achieved by the

ML estimates until N equals -- 2,000. A bias on the high side of aML and failure to attain the Cramer-

Rao bound became more and more evident as the number of events N diminished from 2,000 to 200.

Another very important comparison is the ratio of the standard deviation of aML to that of the

estimator, obtained using the method of moments. Direct calculation shows this ratio is roughly ! .45,

implying that the ML procedure is significantly better than the method of moments when dealing with

the simple power law. This result is not too surprising, however, because ML estimators in general

have better statistical properties than the estimators obtained by the method of moments. 3



4. DETECTOR RESPONSE FUNCTION

Based on GEANT simulations of energy deposition for rnonoenergetic protons at specified

energies of 0.1, 1, 10, 100, 1,000, and 5,000 TeV, the Gaussian distribution provided a reasonable

description of the distribution of energy depositions at each of these incident energies. 4 Furthermore,

the mean detector response was well approximated by a linear function of incident energy in the range

of interest for this study, typically between 10 and 5,500 TeV. Other detector response functions, such

as a gamma distribution and another response function constructed from a combination of normal

distributions having different parameters, will also be presented.

The random variable Y is introduced to represent the detector's response in terms of energy

deposition of a GCR proton of incident energy E. The conditional mean response and standard devia-

tion of Y for a particular incident energy E are modeled as [dyi E = (a +bE) and O'yiE = (c + dE),

respectively, where the four coefficients a, b, c, and d are estimated using linear regression in the

GEANT simulation results. Thus, for each simulated incident GCR proton energy E i, the detector

response is simulated as

or

Yi = ]3YlEi + _YIEiZi
(16)

Yi = (a + bE i ) + (c + dE i )Z i , (17)

with the nonnegativity constraint Yi > 0 and where Z i is a standard normal random number having zero

mean and unit standard deviation. Thus, the detector response function is defined as

(Y-_IL)2

q'¢lE 20"_'IE v>O , (18)
g(vlE)= " ._ e

where OvlE is a normalizing coefficient related to the truncation of the normal distribution resulting

from the constraint v > 0. It is worth noting for constant resolution studies in which a Gaussian

response function is assumed and/9 = o'/_ is set to values 0.4 and 0.6, the corresponding detector

energy resolution is 39 and 51 percent, respectively, and is rounded to 40 and 50 percent in the figures

and tables in this TP.

10



Thus. r/viE is determined from

oo l ---

r/,,iE _
PvlE

9

2 dz , (19)

where the lower limit of integration is -1 divided by the resolution function, given as

PvlE = aYIE / PYIE = (c+ dE) / (a + bE) .
(20)

First, it is worthwhile to consider a detector having energy resolution /gvl E = _YIE /]'IyIE

a constant/9and independent of the cosmic-ray's energy E so that _YIE "- 10 ]'IYIE, where typical values

of interest for p are 0, 0.2, 0.3, 0.4, and 0.6. It should also be noted that the normalizing coefficient 1"/

in equation (19) is constant whenever the detector resolution p is energy independent.

Second, a case where PY/E and cry, E are linear but their ratio is not a constant, so that the

detector's resolution is a nonlinear function of incident energy E, was investigated. For this second

scenario, two studies were conducted in which the resolution is getting better, from 40-percent

resolution at 20 TeV to 30-percent resolution at 5,500 TeV, and then getting worse, from 30-percent

resolution at 20 TeV to 40-percent resolution at 5,500 TeV. These two energy-dependent cases are

presented in section 8.

11



5. PROBABILITY DISTRIBUTION OF THE DETECTOR RESPONSE

The probability distribution for the detector response in the presence of the simple power law

energy spectrum over the energy range [E_,E2] is

go(Y;al)= _ g(ylE;P)Oo(E;al)dE, v>O .

El

(21)

The spectral parameter a I has been explicitly included in the argument list of both the simple

power law pdf as O0(E;_t) and the detector response distribution go(y;al ) in equation (21 ) to indicate

that this spectral index is inherited through the integral.

12



6. IDEAL DETECTOR

The concept ofa zero-resoluOon or ideal detector is very useful because it sets an upper bound

on the expected performance of any real detector. Furthermore, it allows quantifing the magnitude of

the uncertainty in the estimate of the spectral parameter. This uncertainty is measured in terms of the

standard deviation of the estimator and attributable to event statistics (statistical fluctuation of inci-

dent GCR proton energies) relative to the uncertainty in measuring the spectral parameter estimate

induced by the detector's nonzero energy resolution.

Thus, for an ideal detector, p = 0 so that the standard deviation Gy[ E = 0 for all GCR event

energies E. Hence, the detector response to a GCR of energy E is given by Y = a + bE so that the

incident energies may be directly obtained as E = (Y - a)/b so that the estimation procedures devel-

oped in sections 4 and 5 apply.

6.1 Method of Moments for a "Real" Detector

The conditional expected value theorem is utilized that says the expected value of the condi-

tional expected value is the unconditional expected value, 5 or in the notation of mathematical expec-

tation applied to the detector response Y,

My = < Y > = <<YIE >> (22)

Thus, for a detector with constant resolution p, the following is obtained:

py = (a + bp£ )[l

oo )[-

+ prt(p) e 2dr , (23)

where ]d_, is the mean of the detector response distribution and ,ttE is the mean of the simple power law

distribution. The term involving the integral can be thought of as a correction term to the mean for the

truncation and can be ignored whenever p < 0.30; i.e., 30-percent resolution or better. Using the

method of moments, ]dr is estimated with the sample average Y. When combined with equation (5)

with m = 1 for ]dE yields equation (24) that can then be solved in terms of _lby numerical methods:

13



/b a &l-I E? -_l-c2-dl_ _ = "-_ (24)

/3 2

_ x 2 ]
1+ p_(p) f

-..q-
-- C dx

For example, when the resolution is a constant 40 percent (p = 0.40), the point estimate of the

spectral parameter a I, based on the 5,000 missions, is 2.801 using equation (24) and 2.79 using the

same equation but with the correction term set to zero in the denominator. This results in a bias of

=-0.01 that can be removed by including this correction term. This effect is much more pronounced

when p = 0.6 and results in a bias of 0.1 in the point estimate of oQ, so the correction term is critical.

When the detector response distribution is symmetric and truncation is negligible so that/.ty

= (a + bilE), then a 1 can always be estimated using the mean of the detector responses Y to estimate

/2y in equation (5) with m = 1. This implies that knowledge of the variance of the detector distribution,

and hence the resolution, is not required in order to estimate a I, provided it is known the resolution is

<30 percent so the effect of truncation can be ignored.

This is a useful result because if the uncertainty regarding the true resolution is non negligible,

then the method of moments might be a good way to proceed with the estimation of al; e.g., it is

known the detector's energy resolution is <30 percent but nothing more. However, as already noted,

the method of moments does not provide the minimum variance estimator that the ML method does,

which requires a complete specification of the detector parameters a. b, c, and d of this assumed

Gaussian response function. Furthermore, the energy resolution of most real detectors is worse than

30 percent.

This estimator, based on the method of moments, is a function of the random variable Y and

has its own associated pdf. Since Y has mean ,ur and variance 0.2, it is known by the central limit

theorem the distribution of Y follows a normal distribution with mean fry and variance 0.2/N. Thus,

the variance of the detector response Y is 0 .2 = @2)_ ,u_ where

+ +<Y2)=(a2+2abftE _"0._
oo (1 + px) 2 '"

._}-_ e 2 dx
(25)

For example, when a I = 2.8, E I = 20 TeV, E 2 = 5,500 TeV, and p = 0.40, Yis normally distributed

with mean 131.58 GeV and standard deviation (213.69 GeV)/N U2. The probability distribution of 4 I

can be constructed and its mean and standard deviation obtained by solving the probability equation

in equation (26) using the methods discussed with equation (I 1)"

14



Pr _ 5i)T6g < z i X2
1

= __xe 2 dr.(26)
-....-oo

If the truncation effect is negligible in equation (25), then the following succinct formula for

the variance of the detector response as a function of detector parameters a, b, and p and the mean ,uE

and variance 0-} of the power law distribution is obtained:

= + t_0- E .
(27)

In terms of the standard deviation of the detector response _y, the approximation in equation

(27) is seen to be quite good. When p = 0.4, this formula yields o"v - 213.37 GeV as compared to the

exact value of 213.69 GeV obtained from equation (26) using tile integral correction terms. When

p -- 0.6, this approximation yields o"v = 237.31 GeV as compared to the actual value of 239.78 GeV.

Thus, ignoring the truncation is not too serious when estimating the standard deviation but can be

devastating for ,o > 0.4 when estimating the mean _r and hence o_I when using the method of

moments. Much insight into the estimation of the spectral parameter o_1 can be gleaned from equation

(27) as it shows the relationship between the variance 0-_, of the detector response distribution, the

variance 0-2 of the GCR proton energy spectrum, and the detector response function parameters a, b,

and p.

The influence of the variance and other higher moments of the simple power law energy spec-

trum is visualized in figure 3, which shows the mean detector response (mean energy deposit) per

mission for 30 simulated missions in comparison with the mean incident proton energy for 30 mis-

sions. Corresponding standard deviations per mission are plotted in figure 4. Note that the detector

response mean and standard deviation per mission tends to track the mean and standard deviation of

the incident energies for the 30 missions, illustrating the strong influence of the GCR energy mission-

to-mission fluctuations on the detector response variation, even in the presence of the "smearing"

induced by this detector having 40-percent energy resolution. In section 6.2, the component of varia-

tion due to the GCR event statistics will be the dominating the component of the total variation in the

standard deviation of the estimator of the spectral index a I .

15



135

134

133

132
=

131

13o

129
"& 128

127

126

125

-"+'-' Mean Detector Response (40% Resolution)
•_ Power Law Mean

46

i _. i _ _ . ._.Jl"Irk i _k .r_ml_ JR ". *. L
; , i . i_ =qk '.., II:._'n :_ ..... _ ImP. i_ 4_

I I l I I

5

45.5

45 _

,44.5 _

44 _

43.5

43
10 15 20 25 30

Mission

Figure 3. Comparing the mean incident energy with the mean

of the detector responses for each of 30 missions.

95

{_" 85

_ 75

65
0

-.-e--. Power Law Sigma
-,_ Stdev of Detector Response (40% Resolution)

300

! !i: 260 _

220 _

180 _"

, • _ ;, ,, ,
_ I I I _" I _" I _ "_140

5 10 15 20 25 30

Mission

Figure 4. Comparing the standard deviation of the GCR incident

energies with the standard deviation of the detector responses
for each of 30 missions.

16



6.2 Maximum Likelihood for a "Real" Detector

As in section 6.1, the method of ML seeks O_MLwhich maximizes the Iog-L function so that log

L(O_ML )> log L(a l) for all a 1, where the likelihood function for the detector response in the presence

of the simple power law energy spectrum of N incident GCR protons over the energy range [E1,E 2] is

N

j=l

N I-E2
(28)

Because of the complexity of the integral and the desired capability to easily change the func-

tional form of the detector response function g in equation (28), a numerical minimization algorithm

called the Nelder-Mead downhill simplex method that does not require gradient inlormation (deriva-

tives) for obtaining aML was chosen. 6 Since this is a minimization algorithm, the objective function is
defined as

O(a l):-logL(a l)=-_iog

j=l LEI
g(yj IE) Oo(E;al )dE]

(29)

so that minimizing O(a'l) maximizes log L(_I) as desired, where the integral is numerically evalu-

ated. The following two termination criteria are used to halt the search procedure for the ML estimate

at the (nl + 1)th iteration:

(i) l_l,m+ I - 0_i,m 1<61

(ii) [O(a l,m+l) - O(¢Xl.m)l<e2 (30)

The search procedure continues until the termination criteria are met, which in words is as

follows: (i) The movement in successive step sizes of a I is <e I and (ii) the objective function is

changing by an amount <62 . Typical values used for these two stopping tolerances are on the order of

10 -5 and seem reasonable in light of the magnitude of the parameter being estimated (=2.8) and the

value of the objective function in the vicinity of the found ML solution O(O_ML ), of the order of

magnitude 105 when E I is taken to be anywhere between 10 and 30 TeV, so the number of terms in the

sum is between 182,000 to 26,000, respectively. Furthermore, changing 61 and/or 62 in either direc-

tion by an order of magnitude provided no noticeable change in results.
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Figure 5 showsthe ML estimatesof a1for a zero-percentresolution detectorobtainedfrom
equation(14) in comparisonwith the ML estimatesobtainedfrom a 40-percentresolution detector
andapplying thedownhill simplex algorithm to equation(29) for 30missions.This very closecom-
parison suggeststhat the GCR event statisticsare the dominating componentof uncertainty in the
estimationof the spectralparametera 1.
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7. NON-GAUSSIAN DETECTOR RESPONSE FUNCTION

The results so far have assumed a Gaussian detector response function. While reference 4

suggests that a Gaussian function is reasonable, there is concern that perhaps the response function is

skewed slightly to the right and that this "tail" will contribute to greater difficulties in estimating the

spectral parameter. The gamma response function, capable of describing a wide variety of shapes with

right-hand skewness (outer curve from the right in fig. 6), was introduced to address this concern. Its

parameters were set to provide a constant 40-percent energy resolution over the study range 20-5,500

TeV from which events having incident energy described by a simple power law with a 1 = 2.8 were

simulated. The number of these events was determined using the baseline detector collecting power.
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Figure 6. Gaussian and gamma detector response functions

to 40 TeV proton (40-percent resolution).

Based on 10,000 simulated missions, the mean ML estimate of ot 1 was 2.800 and standard

deviation 0.0093 as compared to 2.800 and 0.0092 for the mean and standard deviation, respectively,

corresponding to a Gaussian response function. Thus, the conclusion that this skewness and other

non-Gaussian assumptions are insignificant when using the method of ML. However, as will be shown,

the real key is not so much a matter of what the response function is as knowing what it is; i.e., an

accurately understanding of the response function over the incident energy range must be made. It

should also be noted that while the gamma response function as modeled has a constant energy reso-

lution of 40 percent, the Gaussian used in this comparison had a 39-percent resolution as previously

discussed.
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8. ENERGY-DEPENDENT RESOLUTION STUDY

The situation in which the detector response function is assumed to be Gaussian, but its energy

resolution varies with incident GCR event energy, is of particular interest to designers of cosmic-ray

detectors. In the studies presented so far in this TP, the detector response function is assumed to be

Gaussian with a linear mean response (energy deposit) of the form (a + bE) and with constant detector

energy resolution/9 so that the parameter cr in the Gaussian response function is defined as o'(E)

=p(a + bE). Two cases of interest are as follows: (I) Energy resolution is "getting better," from

40-percent resolution at E 1 = 20 TeV to 30 percent at E 2 = 5,500 TeV and (2) "getting worse," from

30-percent resolution at E I = 20 TeV to 40 percent at E 2 = 5,500 TeV. These two cases are modeled by

assuming that o'(E) is a linear function of incident GCR energy of the form (c + dE) and then the

coefficients _"and d are determined by matching the conditions for each of the two cases. Doing so

yields the energy-dependent resolution curves depicted in figure 7.

Table 1 shows the results based on 100 simulated missions using the same incident GCR ener-

gies for both cases. The mean estimates are seen as essentially unbiased with standard deviations

having expected comparisons: e.g., standard deviations slightly larger for the "getting worse" case.

The constant 30- and 40-percent cases are included for comparison.
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Figure 7. Energy-dependent resolution curves.
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Table 1. Nonconstant energy resolution study.

Mean andStandard Deviationof the Maximum LikelihoodEstimateof (_1
Basedon 5,000 Missions

Resolution

Spectral Nonconstant Nonconstant

Parameter Constant30% Constant40% (Getting Better) (Getting Worse)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

c_1 2.8 0.0088 2.8 0.0092 2.8 0.0090 2.8 0.0091
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9. IMPLICATIONS OF DETECTOR RESPONSE MODEL UNCERTAINTIES

Maximum likelihood estimation of the spectral parameter _Z1 using equation (29) requires the

complete specificity of all detector response model parameters. The reality of knowing these param-

eters with little or no surrounding uncertainty depends largely on designers being able to calibrate the

detector at different incident energies at a particle accelerator facility. However, because space-based

detectors will be exposed to GCR events having energy much greater than those energies available at

accelerator facilities, it becomes essential to gain an understanding of the detector's response func-

tion using Monte Carlo simulations of the detector's response (energy deposit) to those energies that

cannot be attained at accelerator facilities. These simulations, coupled with a favorable comparison

between simulation results and accelerator results at energies available in a test facility, will provide

a better understanding of the detector response function.

Next, by way of example, an investigation is done of the impact on estimating a I when certain

detector response function parameters are incorrectly known, and as shall be seen, this state of igno-

rance will manifest itself as a bias in the mean or point estimate of a t. This state of ignorance is

modeled by simulating detector responses according to one set of detector response function param-

eters and then using a different set of parameters in the detector response function g in equation (29)

during the ML estimation procedure.

Since detector resolution is an important design parameter, consider first the case where the

detector has a constant energy resolution. In an assumed state of misunderstanding, a different resolu-

tion value was used in equation (29). For example, suppose the real detector resolution is a constant

35 percent, but in the simplex search, the resolution parameter p is set to different constant values in

equation (29), corresponding to resolutions ranging from 30 to 40 percent. This situation is modeled

by simulating the detector responses Yi as

Yi = (a + bEi)(1 + 0.35 Z i) (31)

according to equation (17) and then set p to the different values in equation (29) in the ML procedure.

The results for 500 simulated missions for each assumed resolution 30 through 40 percent while the

+'real" resolution is a constant 35 percent are presented in table 2. Note that the mean estimates exhibit

a bias as a result of using incorrect values ofp in equation (29). Note when p = 0.35 in equation (29)

and hence matches the "real" resolution as used in equation (31) to simulate the detector responses,

the means of the ML estimates match the assumed spectral parameter value of a i = 2.8 used in the
simulation.
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Table 2. Biased estimate of _1 when detector energy resolution is incorrectly

known and assumed to be a constant 35 percent.

RealEnergy
Resolution 30% 31% 32% 33% 34% 35% 36% 37% 38% 39% 40%

MeanEstimate
of (x1 2.83 2.83 2.82 2.81 2,81 2.80 2.79 2.79 2,78 2.77 2.76

Another interesting situation to consider is when the real detector resolution is energy depen-

dent, but in a state of ignorance, a constant resolution value is used in equation (29) in the ML estima-

tion of _1. For example, if the real detector resolution is "getting better" as in figure 7 but instead a

constant p = 0.40 is used in equation (29), a mean estimate of 2.81 for a I is obtained, whereas if p =

0.35 is used in equation (29), a mean estimate of 2.78 is obtained. One may initially be surprised by

this comparison since 0.35 can roughly be considered the average resolution value for this energy-

dependent case and that using a constant p = 0.35 in equation (29) should provide a closer result (less

bias) than when p is set to 0.40. However, remember that the p = 0.40 assumption is closest to "real-

ity" in the region where events are most numerous because of the steepness of the power law and the

true energy-dependent case does start at 40-percent resolution. Also interesting is that if p= 0.38 in

equation (29), the mean estimate 2.8 is obtained, even though the "real" resolution is the energy-

dependent "getting better" case--a result discovered by trial and error!

A much larger bias in the estimate of a I is observed when the case where the real detector

response function is the gamma function with a constant energy resolution of 40 percent, as depicted

in figure 6, but instead, in a state of misunderstanding, a Gaussian response function in the ML proce-

dure is assumed and the Gaussian response function defined in equation (18) is substituted into equa-

tion (29), resulting in a mean estimate of 2.52 for a I.
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10. APPLICATION TO REAL COSMIC-RAY DATA

In these simulations, the GCR events are simulated from an energy range E I to E 2, where

typically E 2 = 5,500 TeV for this generic-sized detector and E 1 is a value between 5 and 25 TeV. The

choice of E 2 is based on the collecting power of the detector and is chosen such that there will be only

a negligible number of events above E 2. The selection ofE l is largely dictated by the practical number
of events that can be handled in the simulation for several thousand missions.

Next, for each of these simulated GCR events, a detector response is simulated according to

the assumed detector response function and then the full set of simulated responses are used to esti-

mate the spectral parameters. However, because no energies below E l are simulated, frequency histo-

grams of the simulated detector responses do not match the front-end portion of a real cosmic-ray

energy spectrum. This difference or mismatch is an artifact of not having generated events from

below E l that would have had the effect of filling in this front-end portion of the histogram and for

consequently resembling a real cosmic-ray energy spectrum.

This difference is not critical when making relative comparisons of the effects of design

parameters when the detector response function parameters used to generated the simulated responses

match those detector response function parameters used in equation (29) in the simplex search for the

ML estimate of _l: i.e., a perfect understanding is had of the detector response function. However,

when the impacts of response function uncertainties are investigated, it is more important that the

simulation techniques produce results that are closer to a real cosmic-ray energy response spectrum.

To make the histogram of the simulated detector responses look like a real cosmic-ray energy

spectrum, a cut Yc in the simulated detector responses is introduced and all energy deposits smaller

than Yc are dropped. In the simulation, the choice of Yc dictates admissible values of Ej because E I

must be chosen so that only a negligible number of events having incident energy <E l deposit ener-

gies >3',., which of course depends on the detector's energy resolution. For example, if Yc = 80 GeV

corresponding to the mean energy deposit of a 25-TeV GCR event and a Gaussian response function

having 40-percent energy resolution and mean response (a + bE) is considered, as used for the baseline

detector and defined in equation (18), then E I can be any value <10 TeV, since only a negligible

number of events from below 10 TeV will deposit more than 60 GeV. Selecting E 1 = 10 TeV provides

= 182,000 GCR events and setting yc= 80 GeV and dropping all simulated detector responses smaller

than Yc leaves = 44,500 events on average above Yc, which produces a simulated response spectrum

that does indeed resemble a real response spectrum. Table 3 shows the average number of events with

energy deposits >3',. for selected values ofE l from 2 to 20 TeV. The practical benefit of table 3 is that

it provides the optimal value to set E I in the simulation for a given cuty c so as to minimize the number

of events to initially simulate and achieve the same result. For example, if the cut is set at 60 GeV,

then E I =4 TeV would be set, since there is no additional benefit by taking E 1 < 4 TeV.
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Table 3. Number of simulated energy deposits above cut 3,_. for various E t

for Gaussian detector response function with 40-percent resolution.

Culyc
(GeV) 54 59 67 75 80 93 106

NO(>_) E1 (TeV)
3,293,737 2 127,707 97,784 69,979 52,896 44,873 31,487 23,440
1,587,539 3 127,605 97,828 70,013 52,906 44,878 31,487 23,465

945,876 4 126,796 97,648 69,936 52,846 44,837 31,468 23,434
632,988 5 124,971 97,196 69,901 52,841 44,812 31,451 23,424
455,899 6 121,685 96,151 69,731 52,820 44,808 31,447 23,414

345,433 7 116,887 94,211 69,358 52,747 44,779 31,426 23,407
271,630 8 110,969 91,438 68,644 52,621 44,769 31,461 23,427
219,737 9 104,270 87,799 67,457 52,313 44,646 31,440 23,407
181,777 10 97,235 83,592 65,793 51,766 44,412 31,416 23,389
153,119 11 90,162 78,980 63,680 50,982 44,073 31,404 23,427
130,921 12 83,311 74,209 61,201 49,866 43,463 31,313 23,418
113,354 13 76,840 69,427 58,464 48,500 42,658 31,146 23,381
99A98 14 70,819 64,801 55,625 46,941 41,688 30,907 23,352
87,613 15 65,292 60,377 52,713 45,202 40,518 30,576 23,286
78,004 16 60,242 56,217 49,817 43,357 39,237 30,138 23,165
69,939 17 55,655 52,371 47,008 41,454 37,823 29,583 23,003
63,101 18 51,465 48,748 44,292 39,562 36,396 28,967 22,785

57,249 19 47,714 45,464 41,707 37,678 34,923 28,276 22,528
52,200 20 44,320 42,451 39,295 35,835 33,436 27,510 22,206

A very important benefit is realized by introducing the cut y,.; that is, the lower limit of integra-

tion in equation (29) can be set to any value E L < E l with the implication that this ML procedure can

be made independent of the range of integration, as long as E L is chosen wisely using table 3 (or its

equivalent for detectors having a different energy resolution), so that the ML estimation procedure

herein developed can now be applied to real cosmic-ray detector response data. It should be noted that

cuts on the high end are not necessary to consider since any value E H > E 2 is suitable because the

number of events above E 2 is negligible and so q_0 is approximately zero when E > E 2 in the integral

definition of the detector response pdf. However, setting E H unnecessarily high would result in many

unnecessary calculations in the numerical integration of equation (29).

Introduction of a cut Yc requires a modification to the objective function in equation (29) to

handle the conditional detector response distribution because of the constraint y > y,. Thus, the objec-

tive function using cut Yc becomes

N

j=]

(32)
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where

_EH g(yi I E;p)#)o(E;al)dE

go(Y.ilyj>Yc;al)= Y,. , Yj>Yc •

1 - j" go (Y; Q'I )dy

o

(33)

From a simulation point of view, E l = 2 TeV is about the lowest value that was used because of

the vast number of generated events and the requirement to handle thousands of simulated missions

necessary for meaningful inferences. Consequently, cuts much less than 60 GeV were not used in

these studies. However, cuts in real cosmic-ray data can be taken to be much lower since the real

spectrum is automatically filled in from events having incident energies much less than 2 TeV and the

lower limit of integration can then be taken to be any small value.
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11. CONFIDENCE INTERVAL FOR a 1

The ML estimate _ML obtained from equation (29) was shown to (!) be unbiased, (2) attain the

Cramer-Rao minimum variance bound, and (3) be normally distributed when the number of events N is

= 1,200 or la_er. Thus, the variance of C_ML is Var(OrML) = -I/[_2LL/_a_] evaluated at aML for any given

"mission" and where LL denotes the log-likelihood function given in equation (28) which can readily be

obtained by numerical methods. A confidence interval can then be constructed for the unknown spectral

parameter a as illustrated for each of 20 missions at 95-percent confidence in figure 8.

Extending the number of simulated missions to 2,000 provides a frequency histogram of _ML as

shown in figure 9 and of the estimated standard deviation of aML as shown in figure !0.

95-PercenlConfidenceIntervalfor

Lower95-PercentConfidenceLimit _ O_ML _ Upper95-PercentConfidenceLimit

2.86 I

284iii2.82
2.80

2.78

2.76

2.74 , , ,
0 5 10 15 20

MissionNumber

Figure 8. Maximum likelihood estimate with 95-percent confidence interval

for 20 "missions."
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12. TESTING FOR SLOPE DIFFERENCES OF TWO COSMIC-RAY ELEMENTAL SPECIES

Given two cosmic-ray elemental species A and B with slopes o_and/3, an important hypothesis to

test is

versus

(same "slopes")

To test this hypothesis, ML estimates O_ML and/_VlL for each slope parameter using equation (29) and their

respective variances Var(_ML) and Var(flML), numerically obtained as discussed in section 11. Because

aML and flML are both normally distributed for large N, the test statistic T = (aML - flML) is used to test H 0.

Note the following:

1. T has mean _tT = (a - 13) because O_ML and/_IL are unbiased.

2. The standard deviation of T is O"T = 4Var(_ML) + Var(flML) because O_ML and flML are independent.

3. T is normally distributed because _ML and/_ML follow the normal distribution.

4. T is normal(0, O-T) when H 0 is true.

A two-sided test rejects H 0 with confidence C whenever ITI > zc/2cy T, where Zcl2 is the critical value

of the normal distribution for confidence level C for a two-sided test. The width of the confidence interval

for (a -13) is then 2 zc/2a T.

Furthermore, if the number of events is doubled, then let D denote the test statistic similarly defined

as T. Then D is normally distributed with mean zero and standard deviation crD underH 0 also; note that o"o

= a T/Sqrt(2) since the variance of each ML estimate is halved when the number of events doubles as

discussed in section 13. Thus, the width of the corresponding confidence interval is reduced by a factor of

i/Sqrt(2) when the number of events doubles.
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13. SUMMARY, REMARKS, AND CONCLUSIONS

Two methods for estimating the single spectral index a I of a simple power law have been

investigated. The first method, called the method of moments, was found to be very useful in studying

the general nature of the statistical estimation problem as well as yielding an analytical solution that

could be compared with Monte Carlo simulation results. Furthermore, when the detector resolution is

better than 30 percent so that the truncation of the detector response function is negligible, the method

of moments provides an estimator of a I without requiring specific knowledge of the detector resolu-

tion p but only that it is better than 30 percent. This does not imply p is insignificant when it is

<30 percent, but only that the correction terms in equations (24)-(26) can be ignored. Thus, explicit

knowledge of the value of p is not needed to estimate a I . In fact, the standard deviation of the estima-

tor increases as p increases, as one would expect, and results from the fact that whatever phappens to

be, its impact is communicated to the estimate of a 1 through the variance of the detector mean

response Y---a function of p as indicated in equations (26)-(28). Another interesting result is that

when the resolution is <30 percent, the explicit functional form of the detector model need not be

known, but only that it is symmetric. Unfortunately, most detector response functions are worse than

30-percent resolution and may be asymmetric as well.

The method of ML estimation clearly stands out as the method of choice for estimating a I in

terms of minimum variance and consistency (asymptotically unbiased) as well as asymptotic normal-

ity that allows for probabilistic statements, such as confidence intervals for the unknown spectral

parameter. These results as a function of detector resolution are shown in figure 8.

Maximum Likelihood and Method of Moments

Estimator of Spectral Parameler
(Simple Power Law) Versus Detector Resolution
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Figure 1 I. Comparison between method of moments
and ML as a function of detector resolution.
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Whencomparedto thestandarddeviationof themethodof momentsestimator,theratio varies
from 1.47for thezero-percentresolutiondetectorto 1.33for the50-percentresolutiondetector,which
is roughlyequivalentto losing half of thedetector'scollecting powerby choosingtheinferior method
of momentsestimationtechnique.

Also shown is that the standarddeviation of the estimate for both estimation procedures is

inversely proportional to the square root of the sample size, so that halving the collecting power

increases the standard deviation by a factor of __. This holds true for the standard deviation of the

ML estimate as long as it attains the Cramer-Rao lower bound, which it does when the number of

GCR events exceeds 2,000.

Another important result is the relationship between the collecting power and the energy reso-

lution of the detector. A measure of the detector's ability to estimate the spectral parameter a 1 is its

standard deviation, as seen in figures 8 and 9. The dominant component of the standard deviation of

O_ML is attributable directly to the large fluctuations in GCR incident energies, being driven by the

large variance and other higher moments of the simple power law distribution. This large component

can only be reduced by increasing the number of events N that is controlled by the collecting power of

the detector. A comparison of the standard deviation of aML for the generic detector discussed in this

TP and when its collecting power is halved is shown in figure 9. Table 4 provides the numerical

results used to construct many of the figures in this section.
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Figure 12. Comparing the effect of collecting power on the standard

deviation of the ML estimate of the spectral index a 1.
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Table 4. Numerical values used to construct figures 1 I and 12 GCR.

El=20 TeV,E2=5,500 TeV,

(x1=2.8,Naverage=52,000Events.

5,00g Mission Averagesfor SimulationResults.

1.

2.

3.

4.

5.

6.

7.

8.

9. Coefficient of variation Vy(detector,%)

Method of moments (theory)

Method of moments (simulation)

Maximum likelihood (Cramer-Raolower bound)

Maximum likelihood (simulation)

Mean detector response (GeV)(theory)

Mean detector response (GeV)(simulation)

Standard deviation (theory)

Standard deviation (simulation)

El=20 TeV,E2=5,500 TeV, u1=2.8, Naverage=26,000
Events.5,000 Mission Averagesfor SimulationResults.

10. Maximum likelihood

11. Ratio of line 4 to line 10, compareto

O%

0.0115

0.0114

0.00786

0.0078

130.66

130.66

192.07

191.47

147

0.0110

1.41

DelectorResolution

20% 40% 50%

0.0116 0.0128 0.0136

0.0117 0.0125 0.0133

Analyticalsolution not available

0.0083

130.66

130.64

197.61

196.86

151

0.0118

1.42

0.0092

131.58

130.64

213.69

213.33

162

0.0132

1.43

0.0100

138.85

138.81

239.77

238.82

173

0.0144

1.44
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